The domain of $f(x) = \frac{1}{{\sqrt {{{\log }_{\frac{\pi }{4}}}({{\sin }^{ - 1}}x) - 1} }}$,is

  • A

    $\left( { - 1,\frac{1}{{\sqrt 2 }}} \right)$

  • B

    $\left[ {0,\frac{1}{{\sqrt 2 }}} \right)$

  • C

    $\left( {0,\frac{1}{{\sqrt 2 }}} \right)$

  • D

    $\left( { - \frac{1}{{\sqrt 2 }},\frac{1}{{\sqrt 2 }}} \right)$

Similar Questions

If domain of the function $\log _e\left(\frac{6 x^2+5 x+1}{2 x-1}\right)+\cos ^{-1}\left(\frac{2 x^2-3 x+4}{3 x-5}\right)$ is $(\alpha, \beta) \cup(\gamma, \delta]$, then $18\left(\alpha^2+\beta^2+\gamma^2+\delta^2\right)$ is equal to $....$.

  • [JEE MAIN 2023]

Numerical value of the expression $\left| {\;\frac{{3{x^3} + 1}}{{2{x^2} + 2}}\;} \right|$ for $x = - 3$ is

The minimum value of the function $f(x) = {x^{10}} + {x^2} + \frac{1}{{{x^{12}}}} + \frac{1}{{\left( {1\ +\ {{\sec }^{ - 1}}\ x} \right)}}$ is

Let $A=\{(x, y): 2 x+3 y=23, x, y \in N\}$ and $B=\{x:(x, y) \in A\}$. Then the number of one-one functions from $\mathrm{A}$ to $\mathrm{B}$ is equal to ................

  • [JEE MAIN 2024]

Let $f: R \rightarrow R$ be a function defined by $f(x)=(2+3 a) x^2+\left(\frac{a+2}{a-1}\right) x+b, a \neq 1$. If $f(x+y)=f(x)+f(y)+1-\frac{2}{7} x y$, then the value of $28 \sum_{i=1}^3|f(i)|$ is:

  • [JEE MAIN 2025]