The domain of $f(x) = \frac{1}{{\sqrt {{{\log }_{\frac{\pi }{4}}}({{\sin }^{ - 1}}x) - 1} }}$,is

  • A

    $\left( { - 1,\frac{1}{{\sqrt 2 }}} \right)$

  • B

    $\left[ {0,\frac{1}{{\sqrt 2 }}} \right)$

  • C

    $\left( {0,\frac{1}{{\sqrt 2 }}} \right)$

  • D

    $\left( { - \frac{1}{{\sqrt 2 }},\frac{1}{{\sqrt 2 }}} \right)$

Similar Questions

The domain of the function $f(x){ = ^{16 - x}}{\kern 1pt} {C_{2x - 1}}{ + ^{20 - 3x}}{\kern 1pt} {P_{4x - 5}}$, where the symbols have their usual meanings, is the set

The number of functions $f :\{1,2,3,4\} \rightarrow\{ a \in Z :| a | \leq 8\}$ satisfying $f ( n )+$ $\frac{1}{ n } f ( n +1)=1, \forall n \in\{1,2,3\}$ is

  • [JEE MAIN 2023]

Let $A=\{(x, y): 2 x+3 y=23, x, y \in N\}$ and $B=\{x:(x, y) \in A\}$. Then the number of one-one functions from $\mathrm{A}$ to $\mathrm{B}$ is equal to ................

  • [JEE MAIN 2024]

If $a, b$ be two fixed positive integers such that $f(a + x) = b + {[{b^3} + 1 - 3{b^2}f(x) + 3b{\{ f(x)\} ^2} - {\{ f(x)\} ^3}]^{\frac{1}{3}}}$ for all real $x$, then $f(x)$ is a periodic function with period

The function $f(x) =$ ${x^{\frac{1}{{\ln \,x}}}}$